

Part 2. Spectral Clustering from Matrix Perspective

A brief tutorial emphasizing recent developments (More detailed tutorial is given in ICML'04)

From PCA to spectral clustering using generalized eigenvectors

Consider the kernel matrix:
$$W_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$$

In Kernel PCA we compute eigenvector: $Wv = \lambda v$

Generalized Eigenvector: $Wq = \lambda Dq$

$$D = diag(d_1, \dots, d_n)$$
 $d_i = \sum_j w_{ij}$

This leads to Spectral Clustering!

Indicator Matrix Quadratic Clustering Framework

Unsigned Cluster indicator Matrix $H=(h_1, \dots, h_K)$

Kernel K-means clustering:

$$\max_{H} \operatorname{Tr}(H^{T}WH), \quad s.t. H^{T}H = I, H \ge 0$$

K-means: $W = X^T X$; Kernel K-means $W = (\langle \phi(x_i), \phi(x_j) \rangle)$

Spectral clustering (normalized cut)

$$\max_{H} \operatorname{Tr}(H^{T}WH), \quad s.t. H^{T}DH = I, H \ge 0$$

Brief Introduction to Spectral Clustering (Laplacian matrix based clustering)

Some historical notes

- Fiedler, 1973, 1975, graph Laplacian matrix
- Donath & Hoffman, 1973, bounds
- Hall, 1970, Quadratic Placement (embedding)
- Pothen, Simon, Liou, 1990, Spectral graph partitioning (many related papers there after)
- Hagen & Kahng, 1992, Ratio-cut
- Chan, Schlag & Zien, multi-way Ratio-cut
- Chung, 1997, Spectral graph theory book
- Shi & Malik, 2000, Normalized Cut

Spectral Gold-Rush of 2001

9 papers on spectral clustering

- Meila & Shi, AI-Stat 2001. Random Walk interpretation of Normalized Cut
- Ding, He & Zha, KDD 2001. Perturbation analysis of Laplacian matrix on sparsely connected graphs
- Ng, Jordan & Weiss, NIPS 2001, K-means algorithm on the embeded eigen-space
- Belkin & Niyogi, NIPS 2001. Spectral Embedding
- Dhillon, KDD 2001, Bipartite graph clustering
- Zha et al, CIKM 2001, Bipartite graph clustering
- Zha et al, NIPS 2001. Spectral Relaxation of K-means
- Ding et al, ICDM 2001. MinMaxCut, Uniqueness of relaxation.
- Gu et al, K-way Relaxation of NormCut and MinMaxCut

Spectral Clustering

min cutsize, without explicit size constraints

But where to cut?

Need to balance sizes

Graph Clustering

min between-cluster similarities (weights)

$$sim(A,B) = \sum_{i \in A} \sum_{j \in B} w_{ij}$$

Balance weight

Balance size

Balance volume

$$sim(A,A) = \sum_{i \in A} \sum_{j \in A} w_{ij}$$

max within-cluster similarities (weights)

Clustering Objective Functions

$$s(A,B) = \sum_{i \in A} \sum_{j \in B} w_{ij}$$

Ratio Cut

$$J_{Rcut}(A,B) = \frac{s(A,B)}{|A|} + \frac{s(A,B)}{|B|}$$

Normalized Cut

Allized Cut
$$J_{Ncut}(A,B) = \frac{s(A,B)}{d_A} + \frac{s(A,B)}{d_B}$$

$$= \frac{s(A,B)}{s(A,A) + s(A,B)} + \frac{s(A,B)}{s(B,B) + s(A,B)}$$

Min-Max-Cut

$$J_{MMC}(A,B) = \frac{s(A,B)}{s(A,A)} + \frac{s(A,B)}{s(B,B)}$$

Normalized Cut (Shi & Malik, 2000)

Min similarity between A & B:
$$s(A,B) = \sum_{i \in A} \sum_{j \in B} w_{ij}$$

Balance weights
$$J_{Ncut}(A,B) = \frac{s(A,B)}{d_A} + \frac{s(A,B)}{d_B}$$
 $d_A = \sum_{i \in A} d_i$

Cluster indicator:
$$q(i) = \begin{cases} \sqrt{d_B/d_A d} & \text{if } i \in A \\ -\sqrt{d_A/d_B d} & \text{if } i \in B \end{cases}$$

$$d = \sum_{i \in G} d_i$$

Normalization: $q^T Dq = 1, q^T De = 0$

Substitute q leads to $J_{Ncut}(q) = q^{T}(D-W)q$

$$\min_{\mathbf{q}} q^{T} (D - W) q + \lambda (q^{T} D q - 1)$$

Solution is eigenvector of $(D-W)q = \lambda Dq$

A simple example

2 dense clusters, with sparse connections between them.

Adjacency matrix

Eigenvector q_2

K-way Spectral Clustering $K \ge 2$

K-way Clustering Objectives

Ratio Cut

$$J_{\mathbf{Rcut}}(C_1, \dots, C_K) = \sum_{\langle k, l \rangle} \left(\frac{s(C_k, C_l)}{|C_k|} + \frac{s(C_k, C_l)}{|C_l|} \right) = \sum_k \frac{s(C_k, G - C_k)}{|C_k|}$$

Normalized Cut

$$J_{\text{Ncut}}(C_1, \dots, C_K) = \sum_{\langle k, l \rangle} \left(\frac{s(C_k, C_l)}{d_k} + \frac{s(C_k, C_l)}{d_l} \right) = \sum_k \frac{s(C_k, G - C_k)}{d_k}$$

Min-Max-Cut

$$J_{\text{MMC}}(C_1, \dots, C_K) = \sum_{\langle k, l \rangle} \left(\frac{s(C_k, C_l)}{s(C_k, C_k)} + \frac{s(C_k, C_l)}{s(C_l, C_l)} \right) = \sum_k \frac{s(C_k, G - C_k)}{s(C_k, C_k)}$$

K-way Spectral Relaxation

Unsigned cluster indicators:

$$h_1 = (1 \cdots 1, 0 \cdots 0, 0 \cdots 0)^T$$
$$h_2 = (0 \cdots 0, 1 \cdots 1, 0 \cdots 0)^T$$

Re-write:

$$h_k = (0 \cdots 0, 0 \cdots 0, 1 \cdots 1)^T$$

$$J_{\mathbf{Rcut}}(h_1, \dots, h_k) = \frac{h_1^T (D - W) h_1}{h_1^T h_1} + \dots + \frac{h_k^T (D - W) h_k}{h_k^T h_k}$$

$$J_{\text{Ncut}}(h_1, \dots, h_k) = \frac{h_1^T (D - W) h_1}{h_1^T D h_1} + \dots + \frac{h_k^T (D - W) h_k}{h_k^T D h_k}$$

$$J_{\mathbf{MMC}}(h_1, \dots, h_k) = \frac{h_1^T (D - W) h_1}{h_1^T W h_1} + \dots + \frac{h_k^T (D - W) h_k}{h_k^T W h_k}$$

K-way Normalized Cut Spectral Relaxation

Unsigned cluster indicators:

$$y_k = D^{1/2} (0 \cdots 0, 1 \cdots 1, 0 \cdots 0)^T / ||D^{1/2} h_k||$$

Re-write:

$$J_{\text{Ncut}}(y_1, \dots, y_k) = y_1^T (I - \widetilde{W}) y_1 + \dots + y_k^T (I - \widetilde{W}) y_k$$
$$= \mathbf{Tr}(Y^T (I - \widetilde{W})Y) \qquad \qquad \widetilde{W} = D^{-1/2} W D^{-1/2}$$

Optimize: $\min_{Y} \mathbf{Tr}(Y^{T}(I - \widetilde{W})Y)$, subject to $Y^{T}Y = I$

By K. Fan's theorem, optimal solution is

eigenvectors:
$$Y=(v_1, v_2, ..., v_k)$$
, $(I-\widetilde{W})v_k = \lambda_k v_k$
 $(D-W)u_k = \lambda_k Du_k$, $u_k = D^{-1/2}v_k$
 $\lambda_1 + \cdots + \lambda_k \le \min J_{Neut}(y_1, \cdots, y_k)$ (Gu. et al.

(Gu, et al, 2001)

K-way Spectral Clustering is difficult

- Spectral clustering is best applied to 2-way clustering
 - positive entries for one cluster
 - negative entries for another cluster
- For K-way (K>2) clustering
 - Positive and negative signs make cluster assignment difficult
 - Recursive 2-way clustering
 - Low-dimension embedding. Project the data to eigenvector subspace; use another clustering method such as K-means to cluster the data (Ng et al; Zha et al; Back & Jordan, etc)
 - Linearized cluster assignment using spectral ordering and cluster crossing

Scaled PCA: a Unified Framework for clustering and ordering

- Scaled PCA has two optimality properties
 - Distance sensitive ordering
 - Min-max principle Clustering
- SPCA on contingency table ⇒ Correspondence Analysis
 - Simultaneous ordering of rows and columns
 - Simultaneous clustering of rows and columns

Scaled PCA

similarity matrix $S=(s_{ii})$ (generated from XX^T)

$$D = \operatorname{diag}(d_1, \dots, d_n) \qquad d_i = s_i.$$

Nonlinear re-scaling: $\tilde{S} = D^{-\frac{1}{2}} S D^{-\frac{1}{2}}, \tilde{S}_{ii} = S_{ii} / (S_i S_i)^{1/2}$

Apply SVD on $\widetilde{S} \Rightarrow$

$$S = D^{\frac{1}{2}} \widetilde{S} D^{\frac{1}{2}} = D^{\frac{1}{2}} \sum_{k} z_{k} \lambda_{k} \ z_{k}^{T} D^{\frac{1}{2}} = D \left[\sum_{k} q_{k} \lambda_{k} \ q_{k}^{T} \right] D$$

 $q_{\mathbf{k}} = D^{-1/2} z_{\mathbf{k}}$ is the scaled principal component

Subtract trivial component $\lambda_0 = 1$, $z_0 = d^{1/2}/s...$, $q_0 = 1$

$$\lambda_0 = 1, z_0 = d^{1/2}/s.., q_0 = 1$$

$$\Rightarrow S - dd^{T}/s.. = D \sum_{k=1}^{\infty} q_{k} \lambda_{k} q_{k}^{T} D$$
 (Ding, et al, 2002)

Scaled PCA on a Rectangle Matrix

⇒ Correspondence Analysis

Nonlinear re-scaling:
$$\tilde{P} = D_r^{-\frac{1}{2}} P D_c^{-\frac{1}{2}}, \tilde{p}_{ij} = p_{ij} / (p_i p_j)^{1/2}$$

Apply SVD on \tilde{P} Subtract trivial component

$$P - rc^{T}/p.. = D_{r} \sum_{k=1}^{\infty} f_{k} \lambda_{k} g_{k}^{T} D_{c} \qquad r = (p_{1}, \dots, p_{n})^{T}$$

$$f_{k} = D_{r}^{-\frac{1}{2}} u_{k}, g_{k} = D_{c}^{-\frac{1}{2}} v_{k} \qquad c = (p_{1}, \dots, p_{n})^{T}$$

$$c = (p_{1}, \dots, p_{n})^{T}$$

are the scaled row and column principal component (standard coordinates in CA)

Correspondence Analysis (CA)

- Mainly used in graphical display of data
- Popular in France (Benzécri, 1969)
- Long history
 - Simultaneous row and column regression (Hirschfeld, 1935)
 - Reciprocal averaging (Richardson & Kuder, 1933;
 Horst, 1935; Fisher, 1940; Hill, 1974)
 - Canonical correlations, dual scaling, etc.
- Formulation is a bit complicated ("convoluted" Jolliffe, 2002, p.342)
- "A neglected method", (Hill, 1974)

Clustering of Bipartite Graphs (rectangle matrix)

Simultaneous clustering of rows and columns of a contingency table (adjacency matrix B)

Examples of bipartite graphs

- Information Retrieval: word-by-document matrix
- Market basket data: transaction-by-item matrix
- DNA Gene expression profiles
- Protein vs protein-complex

Bipartite Graph Clustering

Clustering indicators for rows and columns:

$$f(i) = \begin{cases} 1 & \text{if } r_i \in R_1 \\ -1 & \text{if } r_i \in R_2 \end{cases} \qquad g(i) = \begin{cases} 1 & \text{if } c_i \in C_1 \\ -1 & \text{if } c_i \in C_2 \end{cases}$$

$$B = \begin{pmatrix} B_{R_1,C_1} & B_{R_1,C_2} \\ B_{R_2,C_1} & B_{R_2,C_2} \end{pmatrix} \qquad W = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \end{pmatrix}$$

Substitute and obtain

$$J_{MMC}(C_1, C_2; R_1, R_2) = \frac{s(W_{12})}{s(W_{11})} + \frac{s(W_{12})}{s(W_{22})}$$

f,g are determined by

$$\begin{bmatrix} \begin{pmatrix} D_r & \\ & D_c \end{pmatrix} - \begin{pmatrix} 0 & B \\ B^T & 0 \end{bmatrix} \begin{pmatrix} f \\ g \end{pmatrix} = \lambda \begin{pmatrix} D_r & \\ & D_c \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix}$$

Spectral Clustering of Bipartite Graphs

Simultaneous clustering of rows and columns (adjacency matrix *B*)

$$s(B_{R_1,C_2}) = \sum_{r_i \in R_1} \sum_{c_i \in C_2} b_{ij}$$

min between-cluster sum of weights: $s(R_1, C_2)$, $s(R_2, C_1)$

max within-cluster sum of weights: $s(R_1,C_1)$, $s(R_2,C_2)$

$$J_{MMC}(C_1, C_2; R_1, R_2) = \frac{s(B_{R_1, C_2}) + s(B_{R_2, C_1})}{2s(B_{R_1, C_1})} + \frac{s(B_{R_1, C_2}) + s(B_{R_2, C_1})}{2s(B_{R_2, C_2})}$$

(Ding, AI-STAT 2003)

Internet Newsgroups

Simultaneous clustering of documents and words

Embedding in Principal Subspace

Cluster Self-Aggregation (proved in perturbation analysis)

(Hall, 1970, "quadratic placement" (embedding) a graph)

Spectral Embedding: Self-aggregation

- Compute *K* eigenvectors of the Laplacian.
- Embed objects in the *K*-dim eigenspace

Spectral embedding is not topology preserving

700 3-D data points form 2 interlock rings

In eigenspace, they shrink and separate

Spectral Embedding

Simplex Embedding Theorem.

Objects self-aggregate to K centroids

Centroids locate on *K* corners of a simplex

- Simplex consists *K* basis vectors + coordinate origin
- Simplex is rotated by an orthogonal transformation T
- T are determined by perturbation analysis

Perturbation Analysis

$$Wq = \lambda Dq$$
 $\hat{W}z = (D^{-1/2}WD^{-1/2})z = \lambda z$ $q = D^{-1/2}z$

Assume data has 3 dense clusters sparsely connected.

$$W = \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{23} \\ W_{31} & W_{32} & W_{33} \end{bmatrix} \qquad c_1$$

Off-diagonal blocks are between-cluster connections, assumed small and are treated as a perturbation

Spectral Perturbation Theorem

Orthogonal Transform Matrix $T = (\mathbf{t}_1, \dots, \mathbf{t}_K)$

$$T = (\mathbf{t}_1, \dots, \mathbf{t}_K)$$

T are determined by: $\Gamma \mathbf{t}_k = \lambda_k \mathbf{t}_k$

$$\Gamma \mathbf{t}_k = \lambda_k \mathbf{t}_k$$

Spectral Perturbation Matrix $\Gamma = \Omega^{-\frac{1}{2}} \overline{\Gamma} \Omega^{-\frac{1}{2}}$

$$\Gamma = \Omega^{-\frac{1}{2}} \overline{\Gamma} \Omega^{-\frac{1}{2}}$$

$$\overline{\Gamma} = \begin{bmatrix} h_{11} & -s_{12} & \cdots & -s_{1K} \\ -s_{21} & h_{22} & \cdots & -s_{2K} \\ \vdots & \vdots & \cdots & \vdots \\ -s_{K1} & -s_{K2} & \cdots & h_{KK} \end{bmatrix} \qquad \begin{aligned} s_{pq} &= s(C_p, C_q) \\ h_{kk} &= \sum_{p|p \neq k} s_{kp} \\ \Omega &= \operatorname{diag}[\rho(C_1), \cdots, \rho(C_k)] \end{aligned}$$

$$s_{pq} = s(C_p, C_q)$$

$$h_{kk} = \sum_{p|p \neq k} s_{kp}$$

$$\Omega = \operatorname{diag}[\rho(C_1), \dots, \rho(C_k)]$$

Connectivity Network

$$C_{ij} = \begin{cases} 1 & \text{if } i, j \text{ belong to same cluster} \\ 0 & \text{otherwise} \end{cases}$$

Scaled PCA provides

$$C \cong D \sum_{k=1}^{K} q_k \lambda_k \ q_k^T \ D$$

Green's function:

$$C \approx G = \sum_{k=2}^{K} q_k \frac{1}{1 - \lambda_k} q_k^T$$

Projection matrix:

$$C \approx P \equiv \sum_{k=1}^{K} q_k \ q_k^T$$

1st order Perturbation: Example 1

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

Optimality Properties of Scaled PCA

Scaled principal components have optimality properties: Ordering

- Adjacent objects along the order are similar
- Far-away objects along the order are dissimilar
- Optimal solution for the permutation index are given by scaled PCA.

Clustering

- Maximize within-cluster similarity
- Minimize between-cluster similarity
- Optimal solution for cluster membership indicators given by scaled PCA.

Spectral Graph Ordering

(Barnard, Pothen, Simon, 1993), envelop reduction of sparse matrix: find ordering such that the envelop is minimized

$$\min \sum_{i} \max_{j} |i - j| w_{ij} \implies \min \sum_{ij} (x_i - x_j)^2 w_{ij}$$

(Hall, 1970), "quadratic placement of a graph":

Find coordinate x to minimize

$$J = \sum_{ij} (x_i - x_j)^2 w_{ij} = x^T (D - W) x$$
 Solution are eigenvectors of Laplacian

Distance Sensitive Ordering

Given a graph. Find an optimal Ordering of the nodes.

 π permutation indexes

$$J_d(\pi) = \sum_{i=1}^{n-d} w_{\pi_i, \pi_{i+d}} \quad \pi(1, \dots, n) = (\pi_1, \dots, \pi_n)$$

$$J_{d=2}(\pi)$$
:

$$\min_{\pi} J(\pi) = \sum_{d=1}^{n-1} d^2 J_d(\pi)$$

The larger distance, the larger weights, panelity.

Distance Sensitive Ordering

$$J(\pi) = \sum_{ij} (i - j)^{2} w_{\pi_{i}, \pi_{j}} = \sum_{\pi_{i}, \pi_{j}} (i - j)^{2} w_{\pi_{i}, \pi_{j}}$$

$$= \sum_{ij} (\pi_{i}^{-1} - \pi_{j}^{-1})^{2} w_{i,j}$$

$$= \frac{n^{2}}{8} \sum_{ij} \left(\frac{\pi_{i}^{-1} - (n+1)/2}{n/2} - \frac{\pi_{j}^{-1} - (n+1)/2}{n/2} \right)^{2} w_{i,j}$$

Define: shifted and rescaled inverse permutation indexes

$$q_{i} = \frac{\pi_{i}^{-1} - (n+1)/2}{n/2} = \left\{ \frac{1-n}{n}, \frac{3-n}{n}, \dots, \frac{n-1}{n} \right\}$$
$$J(\pi) = \frac{n^{2}}{8} \sum_{ij} (q_{i} - q_{j})^{2} w_{ij} = \frac{n^{2}}{4} q^{T} (D - W) q$$

Distance Sensitive Ordering

Once q_2 is computed, since

$$q_2(i) < q_2(j) \Rightarrow \pi_i^{-1} < \pi_j^{-1}$$

 π_i^{-1} can be uniquely recovered from q_2

Implementation: sort q_2 induces π

Re-ordering of Genes and Tissues

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

Spectral clustering vs Spectral ordering

- Continuous approximation of both integer programming problems are given by the same eigenvector
- Different problems could have the same continuous approximate solution.
- Quality of the approximation:

Ordering: better quality: the solution relax from a set of evenly spaced discrete values

Clustering: less better quality: solution relax from 2 discrete values

Linearized Cluster Assignment

Turn spectral clustering to 1D clustering problem

- Spectral ordering on connectivity network
- Cluster crossing
 - Sum of similarities along anti-diagonal
 - Gives 1-D curve with valleys and peaks
 - Divide valleys and peaks into clusters

Cluster overlap and crossing

Given similarity W, and clusters A,B.

Cluster overlap

$$s(A,B) = \sum_{i \in A} \sum_{j \in B} w_{ij}$$

- Cluster crossing compute a smaller fraction of cluster overlap.
- Cluster crossing depends on an ordering o. It sums weights cross the site i along the order

$$\rho(i) = \sum_{j=1}^{m} w_{o(i-j),o(i+j)}$$

This is a sum along anti-diagonals of W.

cluster crossing

K-way Clustering Experiments

Accuracy of clustering results:

Method	Linearized Assignment	Recursive 2-way clustering	Embedding + K -means
Data A	89.0%	82.8%	75.1%
Data B	75.7%	67.2%	56.4%

Some Additional Advanced/related Topics

- Random talks and normalized cut
- Semi-definite programming
- Sub-sampling in spectral clustering
- Extending to semi-supervised classification
- Green's function approach
- Out-of-sample embeding